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BALLISTIC RESEARCH LABORATORTIES

MEMORANDUM REFORT NO. 1467

Tleser/bj
Aberdeen Proving Ground, Md.
April 1963

ROUTINE FOR FINDING ROOTS OF POLYNOMIALS WITH REAL COEFFICIENTS

ABSTRACT

A routine has been developed which computes the real and the complex roots
of polynomials with real coefflcients up to the tenth degree. In case of an
even polynomial it computes its quadratic factors and solves each factor by
the quadratic formula. 1In case of an odd polynomial it computes one real root
by locating it and refining by Newton's algorithm. Then it removes the
computed root from the polynomial reducing its degree by one. The reduced
polynomial is of even degree and it is solved by quadratic factors. The
routine fails when (a) the real roots are of even multiplicity, converging then
to wrong values, (b) the real roots are of odd multiplicity, not converging at
all, (c) the polynomiml is badly conditioned (very small chenges in coefficents

cause large changes in the values of the roots) converging then to wrong values.

The routine is planned to compute frequencies in vibrations problems which
involve complex roots., Statistical evidence seems to indicate that only
polynomials with real roots cen be badly conditioned. If this were the case
the handicap (c) would be of minor importance onliy.



A polynomial of n-th degree can be written as

n n-1 _ i =i
fx) = x + a, X teota X t+e = 2 a; %

vhere a = 1, and a, are real numbers. The roots of £(x) will be denoted by

-—

Xy, §é,....... Eh.

The coefficient &y of x has been set equal to one for convenience.

If n is even all the roots may be complex numbers. If n is odd there
must be at least one real root, in which case we start by finding this real

root.

(a) Ilocating One Real Root for an 0dd Polynomial.
We shall establish first the bound for all roots, which is given by the

theorem
UB(upper bound) = Max lail + 1,

Where Mex lail is the greatest coefficient a,, (1 = 1,2,...,n) in absolute

value. Thus
§l<UB.

Iet us find two consecutive values of f(x) for real values of X, say

£, = f(xl) end £, = f(xe), where x, = - UB#X; x, = = UB+2Ax, and Ax is an

assigned step size of x, chosen sufficiently small that there is likely to
be only one real root between - UB + kAx and = UB + (k + 1) Ax for any k. If

fl < 0 and f2 > O then the real root is between X, and Xpe I fl and f2 have
3 and compare the signs of f2 and f3 and so on.

the same sign, then compute f
Suppose that at some value x

K+1? f changes sign, that is

fk <0 and f 0.

k+1 >

Then the real root x. is located between xk and x

1 k+1’

xk < xl < xk+l.



(b) Refining the located Root by Newton's Method.
let us call the first approximation to the root §1

(1)

X = X

k+1'

The next approximation is then

x 3@ _ @ ey /e ()y) g1 1)y (%’iﬁ) (1)
X

and generally
x(J+l) - x(J) - f(x('j))/f'(x(d)).

The iteration continues until two consecutive values of )‘J)becomea equal
to each other wit('.h:;.n some small preassigned number. This establishes the first
J

real root ;l = x'v/,

(c) Removing from f(x) the Known Real Root.
The next step is to remove this real root by synthetic decision, and find
the coefficients bi of the depressed polynomial. f(x) may be written

n-l
n=-1 - n=1-1
£(x) = S a, x = (x - xl) ;=o b, x

i=o0

Equating the coefficients of the same powers in both members of the
above identity gives

b = 1.
(o]
bo=e +b 3:'1, {(r =1,2,00..,n=1).
= n-1-1 A
The depressed polynomial gl(x) = b, x is of even degree.
=0

(d) Computing Quadratic Factors of Even Polynomials.
An even polynomial can always be factored into real quadratic factors.

Suppose that

2
X +pX+g



1s a real quadrstic factor of f(x). Then £(x) may be written

nw2

n
nei 2 n=2ei
f(x)_;aix =(x" +px +4q) % b, X
=0 =0
Equating the coefficilents of the seme powers in both members of the
above identity gives the coefficlents b 1 of the reduced polynomial.

b

o 1; . =0.

-1

b, =8, =pb, ) =, 5 (r = 1,2,.000,n=2),

In the case when the quadratic

2
X +px+4g

is not an exact factor of f(x), the factoring gives

n -
; a &1 (x2 +PpxX +q) % b, 821 g
=0 : =0

R=Slx+82-

where

Equating the coefficients of x gives

S = bn + p'bn-

17 Ppadd 52 1
Bairstow devised an iteration scheme for improving the values of p and
q, in such a way that the coefficients Sl and 52 and the remainder term

R approach zero,

Bairstow Algorithm. Let p and g be the exact values of the coefficients
which will make Sl and 82 vanigsh, The approximate coefficlents Sl and 82 are
functions of p and q and a Taylor series expansion (nonlinear terms being
neglected) with D = p + Ap; q = q + Aq ylelds

()
5,5, D = 0 = 8,(p, 9) + £p(38,/p) + 2a(35,/30)
Since Sl = bn-l and 82 = bn + an-l



we have
3s,/3p = v _./3p; 38,/3p = 3 /3p + p(d__,/3p) + b,

38,/3q = 3b__,/3q; 38,/3q = 3b_/dq + p(d__,/3a)
Upon using the relation

b, =8, - pb -,

end introducing the notation

db
we obtain the recursion formula for 333

dr = p - pdr-l - qd.r-13 d-l = 0; do = l; (r = l’ 2,....,!1-2)

b

A similar recursion formula for 3;1: can be obtained, giving -(db r/Bq) =d 5

Hence _
asl/ap =-d o asl/aq =-d 5
(@)
3,/ =~ &, ) + P o+ 15 8,/ =-a ,-pd ,

Substituting (2) in (1) yields
(4p) d o * (2q) 43 = Pny

(6p) (a,_; -® ;) +(M)a ,="b

which, solved by Cramer's rule for Ap and Aq gives




where

du-2 dn-3
Den =
(dn-l -bn-l) 4o

Since the nonelineer terms 1nh the Taylor expension have been neglected
the new values of p and q

P=p+4p; Qq=q+4q

willl not represent the true coefficlents of the quadratic fector. We expect
them to be better approximations than p aud q in the sense that they will
make S, and 82 smeller. This procedure can be repeated until S, and S, will

1 1 2
vanish within some prescribed small number.

Initial Approximations. The convergence of the Bairstow algorithm depends

on the initial approximation being close enough to the true value. We have
selected the following initiel approximation to p &hd gq:

1
=1 '
b= 2(|an_l|/n)n » Q= Ian|

The above approximations are averages derived from the well known

properties of the polynomial coefficients,

T Bl
a = X ; a = —— -
nog i nel g xi §=1 x:J

This initial approximation gave convergence in very many widely different
cages which were tested. The routine diverged or converged to wrong values
for polynomials with multiple real roots. Some of the 9th degree polynomials
with all real roots were badly conditioned and converged to wrong values.
Polynomials with all or somé complex roots converged in all cases to the

.correct values,

It has been found that computation of quadratic factors of odd
polynomials by the Bairstow algorithm, which we use in our routine, diverged
in all cases which were tested, even in those where the initial approximations
were very close to the true values. This interesting fact has not to my
knowledge been reglstered in the existing literature on the subject.

9



High degree polynomlals with coefficlents of the order 10° or higher
mist heve the roots reduced by & constant factor, say 10°%, in order to
make the coefficients smeller. Otherwlse the intermediate products arising
in the computations may exceed in megnitude the capacity of & mechine.

The &ppended flow chart and the program in the FORAST language explain
the computational procedure.

TADEUSZ LESER

10



APPENDIX I



*mop/[ ((T-N) ‘a-(T-N) ‘@

g (ov + JW - %yToe (o + J" o

(t-N) ‘g-N‘ga(c-N) ‘d])= g
-mwoN/[ (¢-N) ‘@ N‘€-(2-N) ‘a(T-N)‘g)= v
(¢-N) ‘@ [(1-m) ‘g-(T-N)‘al - ,[(2-N)‘a)= ‘woN

Hu pus ._”d aaoxdury

%1+| "sl=s

(M°** =42 “T=¥) {(T-XN) cqTo-n¢a=26¢ (T-) ‘a=Tg
T=0‘afo=(1-) ‘a¢(2-u) ‘a'e-(T-¥) ‘a -y‘a=y‘a
1=0°gf0=(T-) ‘af (2-¥) ‘are~(T-4) ‘e -u‘v=u‘g

axe .mn pue To Jo0J suotqumrxoxdde 48ITd

0 = % = 'g qwyy yoms tg Ty ¢Tp pura

w (fg+x+ x)- Txfw
& i

LN

IMVHD MOTd

S9A

= 2=N 830(Q

Emuﬁmm.a [0 = 5K s90d ]

2/(v=p T -,_.d..v = %
g/(@-p T+ ) = xuwus ‘o>va
N\@l._.dlu %
g/(gp+ ®-) = xwwm ‘o<va

T e o=
d 4 2 v

on.nn+u.nU+NNo>.nom

oxaz Tenbo
2/u 30

JSPUTHHX
oy3
390D

&—

sak

Io0 q‘v

JuaAd N ST P8y




FLOW CHART (Cont'd)

N4

Compute A = Max (IAll, |A2| civeny |An|)
Compute Upper bound = UB = Ama.x + 1.

Compute consecutive values f, = f(xk); K =1y2,0000
(Iniiial value x, = ((K) (step) - UB).

Compare two consecutive values fk and fk 41

If fk and f have opposite sign then the root Xy is located, xk < Xy < X4

k+1

. : N-1
Find coefficient of the derivative polynomial ? c 1xN"l'i.
=0

§N-1 N-1
(£3(x) = E et - A, (N-1) « -1y
, n=o0 =

c; = Ai(N-i),(1=l,2...n-l).
Refine the value of il by Newton's method
Taking as initisl approximstion x(©) = "k‘+1

) L) e ()5

When x(k+l) = x(k) within small number then
() _ =, = )
:g = Xy5 Print xlf
lDoes N-1=2] yes OT0
NO
2 Neial
Find the coefficient of the reduced polynomial Tix
=0
ne-l
- Ne=i=1
(£(x) = (x - x;) X )
=0
T, =A + X (1-1); Replace A vy T,.

13
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START

oD
le
2.

3,

3.11

GPS

3.2
4

GPSD

b4el

S5e

ROOT1

6o

Tel
EVEN

ROOTR

30
ROOTI

Fel

PROGRAM IN FORAST LANGUAGE

BLOC(A-A10)B-B10)D-D10)C~C1015=-511)T=T10)%

READ(NF)STEP)%
READ(10INOSJAT(A)Y
HONF /2% ENTER(WHeFRAIHIWHN)IFRAN) %
IF{FRAN®Q4SIWITHIN(.00001)G0TO(ODD)}Y
IF=-NOT{NF~203) WITHIN({+000D1) GOTO{EVEN)%
ALP1°Al% BET1°A2% GOTO(SQ)%
ENTER(CVFTOIINFINYY
SET(RO1)% AMOPABS(Al)%
IF=ABS{As(R+1) %AM)IGOTO(24)%
COUNTU(NIINIRIGOTO(14)% GCTO(34)
AMOABS(As(R+1))%
COUNT(N)IN(R)GOTO(14)%
UBO1+AM%
SUMP1% SET(IOL)%
SUMOSUM# (=UB)+As 1%
COUNTI(N+1)IN(TIGOTO(3,1)%
SUM1oSUME SET(KO1)%

ENTER{CVITOF)IKIKF) %
EX1°KF#STEP-UB
$101% SET(I°L)%
So(1+1)1954[#EX] +As 1%
COUNT(N+1)INLL) GOTO(GPY)%
SUM2O5s IN+1)%
1F(ABS(SUM2-SUM1 1 X°A0S(SUMR+SUML)IGLTOL3.2) Y
SUM1oSUM2Y INT(KOK+1)% GOTO(3.11)%
SETtI®1)% COONF%
ENTER(CVITOF)L)IF)®
CorICAs I #(NF-IFI%
COUNTIN)IN(L) GOTO(44)%
SET(Jo1)% sSD19COo%
SDetJ+1)9SDsJ*EX] +CoJ%
COUNTINIINIJ) GOTOLGPSD)Y
SUMDe5S5D s N%
EXPEX]1 =(SUM2/5UMD) %
IF(EX9EX] IWITHIN(00001}WOTOIRCUT])
EX1 PEX% S1°1% SET(I1°1)% sD1°Co%
Soll+1195y [%EX+AWI% SDs(1+1)9SDy I#EX+CoI%
COUNTIN+1) IN(L) GOTO(541%
SUM2%Sy (N+1)% SUMDOSDeN% GOTO(4el)%
PRINT#RROOTH(EX)%
T0°1% SET(1°1)%
TolOAsI+EX*TH1I-11%
COUNT(NIIN(I)IGOTO(64)%
MOVE (N}NOS.FROM(T)TO(A) %
IF=NOT(NF=1°2)wlTHIN(+00001)1GOTO(741)
ALP1CA1%BETLICAZSNFONF-1%GUTOISUI %
INT(NON=-1)% NFONF-1% GOTO(EVEN)
ENTERICVFTOLINFINY S
POABSIA{N=1))/NFBQOARL tAINIL
YOL/(NF~-1)% UNTER(IPOWERIP)IYIALP)I® ALPLO2*ALPY
XO02/NF% ENTER(POLCRIWIX)IBETING
INT(NON+1)% SET(R®2)% B0°1% DO°1%
B1°A1-ALP1% D1°Bl1=-ALP1%
BsROASR~ALP1#By (R=~1}~BET1#B, (R~2)%
DsROBJR~ALPI#Dy(R=-1}-BET1I#Dy(R-2)%
COUNTIN)IN(R)GOTG(BE%
INTONON=11% S1OBs(AN=1)% SZ2OUWN+ALPLI*Bs(iv=1)%
SOABSIS1)+AB5(52)%
1F (L0 wiTHINGe0001140TOIMNI S
DCLOD o (N=2)#%2-Dy IN=3)I% (D9 IN-1)~Es(N-1))%
DELALO (b (N=1)%0 s IN=2)=0sN®D s (N=3))/DELY

DELBECIDo (N=2) %3 sN-BsIN-1)*{Ds(N=1)-Bs(N-11)) /CELY

ALP2OALPL1+DELALY BET29BETI+DELBES
ALP1OALP2% BETLI®BET2% SCTO(BEIN%
DFLTACALPI##2-4#BET]Y
1F(DELTA*0)GOTO(%4)%

ALPHO~ALP1/2% BETOSQRTIDELTA)/2%
X1PALPH+BET®% XZPALPH-BETY
PRINT#RROOTS%(X1)(X2)%
PRINT®COEFS¥{ALPY) (SET)S
IF=NOT(NF=-2°3)wlTHIN(4000011GOTO(9,)
GOTO(START)®

ALPHO=ALP1/2% BETOSURT(-DELTA)/2%
PRINT*IRODTS% (ALPH)ILEET)®
PRINT*COEFSS{ALP1) (BET1)%
1F=NOT(NF=2°0)WITHIN{000C1)IGOTO(94)%
GOTO(START)%
IF=NOT(NF=292)w1THIN(«00001)G0TO19+1)%

INT{N®N=2)% NFONF~2% ALP1°B1% BET1°B2% GOTO(SM%

NFONF=2% INTINON=2)%
MOVE (N) NOS«FROMIb1} TU(AL)S
GOTO(EVEN)%

LNU GOTO{5TARTI®
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